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MULTI-VELOCITY SERBER-WILSON

NEUTRON DIFFUSION CALCULATIONS

Certain types of neutron diffusion calculations were considerably
simplified when the Serber-Wilson Method was introduced about eight
years ago. This method, semi-empirical in nature and named after its
co-d:lscoverers,l wvas first formulated for the one-velocity isotropic
theory and applied to spherical geometries. Within these limits it
has in general proved to be a fairly accurate method, If restricted
to the source-free cese it has, in addition, turned out to be quite
manageable both analytically and numerically.

The Serber-Wilson Method was, however, not extensively used here
until about three years ago., At that time the computation techniques
involved were systematized and somewhat :I.mprovvtscl.2 A year later a
set of special function tables were completed resulting in a considerable
saving of computing time.3 The work involved was further shortened
when the CPC calculator was brought into the picture about a year ago.

Let us consider neutron diffusion problems under the sbove

restrictions for the moment. The corresponding mathematical descrip-

tion is then furnished by the integro-differential equation below:

(1) [/Jr-}-;+ k;.-"é 3},,-*0' ] Mr,ﬂ—) - 32'-°'c dV(r),

1. LA-234 by R. Serber, EM-I41 by A. H. Wilson.
2. 1A-756 by B. Carlson.
3. LA-136hk, 1365, 1366 by B. Carlson, M goldstein, and D. Sweeney.
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where / (r, 4) denotes the neutron flux as a function of radius and
direction cosine and / (r) the integral of / (r, /u) over e from
-1 to +1, The quentities o- and ¢ in (1) represent known step-functions
of r characterizing the assembly of media under consideration, the
general medium being, in this case, a concentric spherical shell.
Specifically, o is the inverse mean free path for neutrons, and ¢

the number of neutrons emerging per collision.

The following steps are involved in the Serber-Wilson Method and
may, in fact, be regarded as a definition of the method:

(A) Prescribing :/V (r) for the general medium with an analytical
expression involving two arbitrary constants. '

(B) Defining and deriving two functionals of /('r), baving the
dimension of l//A (r), one depending perheps on the geometry and the
other being the net neutron flux.

(C) Applying a sufficient number of physical conditions, primerily
continuity conditions, on the two functionals to determine the arbitrary
constants.

An approximate or asymptotic expression for /?r) may be obtained
either b}; applying the Spherical Harmonic transformation to (1) or by

studying the integral equation equivalent to (1).1 In either case
we obtain:

sinkr oskr * sink(r+:
(2) (r)“A[ = *AEr | %A sileema)

1. LA-247 by K. M. Case, LA-571 by B. Carlson. BSee also Appendix,.p. 27.
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vith A = A% coskr , X = (lx /%9 tenkr _, and k from the transcendental

equation ko~ = ¢ art (k/o~). The quantity k, taken to be positive,
may be either real (c 21) or pure imaginary (1> ¢ = 0).
PFor the spherical geometry which is being considered the inward

radial flux Mr) - 2./,/’(r,-1) was chosen as one of the functionals,

the net flux / r) f /"/ r,/u)d/# being the other. Differential

equat:lona for /(r) and d’/(r) are readily obtained from (1) and
the solutions are immediate. For if we let 4o = -1 in (1) we have
on the one hand:

‘&
(3) [ -%W']Jz/('r) = oc VKL),

and hence:
-« r
(%) (A/‘(r) = - ec.rrf oc /f/('r')e'c-r'dr

On the other hand (1) may be written in the form:

) [pdes o2 1 4 (1-/3)]./7(;,,«») ciee S,

vhich, integrated over M from -1 to +1, gives

[ =+ f-.] /fﬁ-) - (-0 o),

APPROVED FOR PUBLI| C RELEASE
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and hence:

(6) Mr) = -3'2- fro- (c-l)r'2 (j/zr')dr'
r

Substituting (2) in (4) we have:

-
(7 /(r) = A [Q(lklr,¢) +A r(l x| r,¢)]:

- A-ﬁ-"'c §1[E1((0‘+1k)r)-E1((0‘ -1k)r)] + Tklf—l [El((cr +ik)r)+E, ((o -ik)r)] §e°-r,
where ¢ # art(k/o-), c21, and ¢ ® arthlklfo-, 1>c 20.

The functions Q and R are tabulated in LA-1364, LA-1365, and LA-1366,

as are the functions S and T in the formula for :///(r). The latter is

obtained by substituting (2) in (6):

® A=) =2 [80xlx) + K(lxis) | =

.Acr(c-l) sinkr - kr cos kr =k x cos kr + kr sin kr
k 2 lkl 2
(k) (kr)

The Serber-Wilson Method may be extended to the anisotropic case
and to gecmetries such as plane and cylindrical.l For the anisotropic
case the transcendental equation for kjs~ will be different. For
other geometries a substitute for the functional (r) may have to

be found. And again, ii’_a. source function is present on the right-
hand side of (1) it may be difficult to find an asymptotic expression

for / (r). Generalizations in the above directions have on the whole

1. Transport Theory of Neutrons (LT-18) by B. Davison

-6-
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AT —

proved feasible, vwhereas, in the direction of more velocity groups

serious difficulties have been encountered.

Let us then turn to the multi-velocity isotropic theory with G

velocity groups.

818 the g’o‘l\p imex,g-l, 2’ LY G:

(9) [;cf; * L,.é 7 + o-g] Jf(r,,ua -3 é‘l Tulen yASY

Instead of (1) we have the following equations where

In the above expression o—-g are the separate inverse mean free

paths and c

oh the transfer coefficients. Denoting the group velocities

by vg s C ¢h represents the number of neutrons of velocity vg emerging

per collision of neutron of velocity Vi, c‘; as well as ¢

calculated from measured cross-sections.

gh

Applying the same principals to (9) as to the one-velocity case

we find the following asymptotic form for the flux distributions:

(10) /I:(r) ~ gl«; Hz) = is;';l o Ai[

sink,.r

cosk.r

1 + K i
2
Eir 1 [Eilr

where ki are the eigenvalues and zd: ; the eigenvectors of the matrix

equation:

c ki/q-l c
ll - m ].2 ooooo . ch
C Can = ki/o-a c
c
(J C ] - ki/ g
| ‘a1 @ - ‘e~ =TE(E,
T~

APPROVED FOR PUBLI C RELEASE
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iandéo:i; taking ai

(10) is determined except for the arbitrary constants s A, end Ai

is remedied by introducing 2G functionals of (10), / (r) and / (r) ,

After solving (11) for k equal to unity,

'ﬁus

and requiring these to be continuous at the boundaries. Applying the

methods of pp 5-6 to equation (9),/ (r) and / (r) are readily
obtained. We have:

Z(r) = 2 M(x, 1) o _/' }: AN vgr'dr'
- 1
‘/g‘(r) =Il/"~¢/§(r,,u)d/‘o = ;}é'j r' g:;vh(csh- agh) J/g’(r')dr',

(12)

where & gn €Qual to unity if h=g and zero if b#g.
The functionals (12) can be considerably simplified if we substitute
(20) on the right-hand side and then mske use of the following

consequence of (11):

G k, /o
1 | 11
(13) E‘o-hcgh Xy = T X e -0 e,

h=l
where the last equality serves to define c;. Performing these

substitutions we obtain:

“ o r ar G i 4 -o '
o+ o et o e,

(14)

‘/’/;(r) .fgf rfe z(c -1) a:;Jf(r-)ar' )

i=l

where the functions J:(r) are those defined by (10).

-8-
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]?f cghnOforg > h we have as a rule G distinct eigenvalues and
consequently as many arbitrary constants as boundary conditions. We
may, therefore, conclude that in this case the sbove generalization of
the Serber-Wilson Method is valid. If, on the other hand, we are
dealing with fissionable materials, for which c ah # 0 for all g » h,
we can, as a rule, not count on (11) to give as many as G eigenvalues.
The result is that we are left with more boundary conditions than

1l

arbitrary constents.” ' A nunber of schemes have been proposed, one of

them entirely satisfactory, which in one way or another circumvent the
above difficulty. A new method which may in the end prove satisfactory
will be introduced below. In the very few applications made to date

it has turned out to be both accurate and practical.

gh ‘gh
defined below, thus transforming (c gh) into a right-triangular matrix:

In this new method we replace the quantities c_, in (11) by

= 0, g>h

|

= C

sh'chs;s’ g<h,

|

(15)

g-1

s K,
-é;gche-fgcghi; .

This obviously eliminates the difficulties referred to but requires

|

some explanations. Before turning to these, however, apd defining Ng,

1.  see Transport ‘Theory of Neutrons (LT-18) by B. Davison, pp 180-185.
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the following consequences of (5) may be noted. If Cgh ™ Ofor g >h

then ¢
gh

G eigenvalues k;, i =1, 2, ... G, (ki/oi)- E';'; . m(ki/c'i), The

= Can’ Equation (11) as modified by (15) will in general have

elements of the eigenvectors sa;g -can be obtained successively

(starting with o1 = 1) since the determinant is right-trisnguler,
"i.e., has zeros below the diagonal, and a; =0, gy 1.
For the purpose of illustrating the above formulee and notation

we consider for the moment the three-velocity case: COnsequenxly,

k)/ 9 = (ogytopytey) art kl/ s Bp/Tp = (cppteqatey r)m o/ s

o 5 ol
2 " 3 3 _3
- (130:0): (Qli 2 3) = (—"T‘—) :130): and (“1: “2: “3) =

€17%11

1
+e3p L ) art k3/°" . Also (0‘1, Ky X

- - - , 3=
("'3 ©10%3+¢) ("2“’22)] o33

»1). The flux distributions
oo

17033 )(c3-25) , Salez-cx0)

for a central core (for which K = 0) are then given by:

f/ ”Alsinklr 2sink2r+°‘3A3 5
1) { =) ~n, 31:2:2: + &3 Ag 2%;7:

sin k_r
\(I;(r) ~A3 —qj-
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Due to the triangular character of the determinants and expressions
above, the labor involved in finding eigenvalues and applying boundary
conditions is considersbly reduced. As en exsmple, connect the six
functionals of (16) with the corresponding expressions for en infinite
shell. We find then that the resulting simultaneous equations can be
grouped, in this case into three sets of two each, thus reducing the

computational work.

Going back to(1l), i.e., to the definition of ghf , it is evident
thdt we are tampering with the interchange of neutrons. Studying
groups #1 and #2, for instance, we £ind that for each collision in #1,
¢,y neutrons arve given to f#2. Hence, if these are given to #1 rather
than #2, as is done in (15), then #2 should receive some compensation.
Letting Na/Nl denote the number of collisions in groups #2 per collision
in group #1, we should clearly reduce °12 (vhat #2 gives to #1) by
s ° 1/N2. This ritual is performed for each pair of velocity groups
and for each medium. However, since N8 is obtained as an integral over
‘/}gf(r) and %(r) is not available until the boundary conditions have
been applied, we are faced with 2G simultaneous equations, transcendental
in half of the unknowns involved. The method requires, therefore, a rather
elaborate trial and error procedure. It is an exact method only if the
ratios Ng/l!h are independent of r within each medium.

Using (14) we have, corresponding to (16), the following expressions

for %Zr) and g(r):

-11-
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e
kL2 k. 3 k
fvf{(r) = A,Q(k,r, °—1—°})+ @A Q(k,r, ;;f)+oclA3Q(k3r, ;1303)

—
an . ‘/}2/.(1.) - QKT ;:—i-g)-r agA3Q(k3r, c—:iz)
“—
k{&f(r) = A3Q(k3r, o’% )
I and

/f{(r)-Al %ci-l)s(klr)+Q§A2 ;él-(cf-l)s(ker)-» ociAa %i(ci-l)S(kar)
) 2(r)42%(c§-;)8(k2r)+ «g%%cg-l)s(kf)
'K(r)ml&3 °li;i(cg-l)s(kBr)

The above formlae can easily be extended to G groups and to the
general spherical shell. In solving systems involving expressions like
(14) and (15) and M separate spherical media, we start with the 2(M-1)
equations involving AG, solve for these unknowns and proceed to the
2(M-1) equations involving Ag and A, ., ete.

With the above method G-velocity problems are essentially reduced

to G one-velocity problems each of which (for the proper values of Ng)

must give the same result for the required critical parameter. The

-12-
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sine part of the formulae for N8 for three velocity groups and &
spherical shell of inner and outer radii a, and

(19)
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2, 1

2 3, 92
Na(r) = A, ra S(k2r)+t>¢2A3 E3— S(k3r)

8

N (r) = A, 2 8( >]
3 A3k3 e .

-13-
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a.2 are given by:

8

!
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N Ny (r) = &, ;Il S(k,r)+ @A, - : S(kzr)+c€A3 Z—%— 8(k7) K
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EXAMPLE I

Consider an untamped Oralloy sphere of density 18.8 gr/em> described

by the 3-velocity parameters given in LA-1276:

.3853 8112
(20) v = (12), o =( 2508 ), c_, = ( .1862
N PN g .1879 gh .2081

.3682  .3902
6925  .uT25 ) .
’2783 05&)"

We propose to calculate the critical radius of the sphere and the

three flux distributions using the method described above. These are

then to be compared with the results in LA-1272, obtained by the

Integral Theory Method.

We take as a first trial, Nl/N3 = 2,6 and N2/N3 = 1.4; as a second

trial 2.6 and 1.45; and as a final trial 2.7 and 1.4.

the following table is obtained:

By calculation

CASE I I III
Calculated N1 /Na=2.6 Ny /N =2.6 Ny /N3=2.7
Quantities No/Ngm=l.h Np/N3=1.45 Np/N3=1.k4
sn,zla,zn 1.2355, .022k,-.1509 | 1.2355, .03%43,-.1509 |1.2355, .0091,-.1717

822,3'23 1.3166, .0829 1.3047, .0690 1.3299, .0829
833 1.5111 1.5250 1.5319.
kys Ky, kg | .35319,.26290, .2765¢ .35319, .25692, .28142| .35319, .26952, .28361
e3, o3, 3 | 1.2355,1.1396,1.1530 | 1.2355,1.1339,1.1578 |1.2355,1.1460,1.1602
cg cg 0O  1.3166,1.34k2| O  1.3047,1.35%2 | 0  1.3299,1.3591
cg 0 o0 1.5111) o 0 1.5250}| o 0 1.5319

-1h-
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Teble (continued)

CASE 1 II 111
ool ocd 1 =460 o3 | 1 -.2110 L6MTO | 1 -.0635 .9uAT
o203 0 1 2338 | 0 1 10877 |0 1 2.2153
o3 o o 1 o o 1 o o 1

' <
Taking A3-l and solving c’;(r) = Q(k3a.l,k3/°‘3cg) = 0 for a,
we find: Caseﬂ_{: a.1-8.l&89, Case II: 31-8.323, and Case III: 91-8.21&3.

In solving (A/;(r) = 0 and ca.lculé.ting the quantities below we meke use

of one of the Serber-Wilson Tables, in this case LA-1364,

i i ; i
Continuing the work, denoting ki/o-gcg by ¢8’ likewise Q(kial’ d)g)

by Q:lg’ and S(kial) by 8,, we bhave:

[——————— e = A V= wER=a =R e =W e =S N =S =

CASE I IT III
¢, ¢5, 45 | .m1y, .5987, .6225 | .19, .5861, .6308 | .THl9, .60k, .6349
$3 & - 8202, 854k | -  .8178, .8630 | - 8416, .8672
¢ | - - womo| - - | - - .9860
ky8q k8 k0, | 2.9962,2.2318,2,3477 |2.9396,2.1383,2.3422 | 2.9113,2.2217,2.339%
8 8, s3 .34600, .43355, 42800 .35648, .43580, .42833} .36134,.43389, .42849
Qp U Qg |-.12417,.13861,.08812) -.11204, .17882, .0878Y -.10588, .13907, .08768
Qs .07418, .02780 .11167, .02757 .OTh5k, 02749
Qs .00011 .00002 .00002

-15-
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Table (continued)

CASE I II 111
3% 3
= f‘_; - -1.,25136 04376 -1.12286
T30 o3
T, g - oy TT364 62094 .37201
A2 -1.1743 .0393 -1.0531
Y -9335 .9503 4138
P,
,/f{(al) -.04860 -.05115 .0h51)4
P
v{(al) _ -.02196 .03438 - .01760

e
We use the above results for l/;/; and Jg (which should be equal

to zero for the correct trial combination) to interpolate for Nl/N3

and N2/N3. Linear interpolation is in this case equivalent to solving

the equations:

.10

/z ousso+-9237—(nl -2.6)-%2(-1'3-1.1;).0,
3 3
v’:::-02196+—%-(—--26) -'926-35‘-(1,3-1.1;)-0,

(21)

simultaneously. The solution of (21) gives nl/n3-2.653 and N2/N3-1.h17

from which, by caleculation, we find k2-.26h30, k,=.28207, a,=8.301,

3

-16-




APPROVED FOR PUBLI C RELEASE
U

aZu-.1295, @3n.7568, @3=1.6882, A =.6918, and A=-.5378.

This problem was also solved using the two-velocity parameters of
Example II. Result: 8 = 8.315. Furthermore, a variation of the
method was tried, making 312 rether than -21 equal to zero. The result
in this case: a, = 8.320.

The following table gives a comparison of the Serber-Wilson Method
and the Integral Theory Method:

- 1 /Ny | R/
Theory

l-velX 2-vel, 3-vel. 3-vel, 3-vel.

S.W. . 8.39 8.32 8.30 2.653 1.417

I.T. 8.72 8.70 8.70 2.630 1.416

*Parameters (LA-1276): o-= ,2821, ¢ = 1,2936.

The flux densities (as functions of r) do not agree nearly as

well, Cf. graph on page 24 and Table VII (Second Set) in LA-1272.

1T
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EXAMPLE II

We consider next an Oralloy (Oy) sphere of density 18.8 gr/cm3

tamped by an-infinite Tuballoy (Tu) shell of density 13.0 and look for

the critical radius and the flux distributions. To simplify the work
here we content ourselves with a two-velocity calculation. In LA-1276

we find the following parameters for Oy and Tu:

4 6.43 .365 897 .553
Oy: Vo= {19.6 ;’ %" (197) & " 2.31»7 .863
(22) ¢
3 61&3 .365 .98 .62
lm g " (19.6 ) g~ (.97 i ®gn = 2.00 .50

For the flux distributions we write according to (10):

U o 2220 g 02

(23) Oy: ¢ :IZr) sin kar

-

7 -klr -kzr
Kooy n S aln, S

(@4)  Tu: 4/ e
e
2(r) = B, =
\
i i
Rote that vg, gh’ 1, c and °‘g in general are functions

of the medium, although for the sake of simplicity, we omit notations

t0 this effect.




3ASv313d O 1119Nd d04 d3anodddv

-61:..

The boundary conditions are described by the following equations, where the left-hand side
refers to the Oy and the right-hand side to the Tu:
Core Tamper
((2) A0y, Py e+ afnalie /oy cl) = BlRt("'lal’kl/""J.)*°‘§3th(°'1‘1’1‘2/ )

(25) {
() A,8(k,0 K pc5) = BR (T8 k),
92, 2 2, 2
() A g(ca"l)s(kz"l) =B, l:_a(cz'l)Tt(kzal)'

The procedure for solving (25) will be the following: Equations (c) and (4) define a
one-velocity problem which we solve by the methods of LA-756, taking A2-1 and obtaining 8 and

32 (as functions of Nl/Na) by calculation. Next we calculate Al, as in previous example, from:

: k) S(kpey) | ¥

and then B, from equation (v) above. Finally, equation (a) is used as a test equation for the

trial quantity nl/na.

() 1, T80y oo, T2 B, Ty b, T 00 ),

ASV3T3d O 11dNd d04 d3aNOdddv
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The functionals Rt(c- r,k/o") and Tt(kr) correspond to the flux

densities (24). Note that the latter have a special form, different

from (10), due to the requirement that the neutron flux vanish at

infinity. Hence:

-kr

[~ e N

wt—— O

l+kr
k )= -

or k :
((1+ F)or); T, (kr
B r); Ty (kx)

(27) Rt(crr,k/o') =c

with ¢ from kfo- = ¢ arth(k/o-).

Turning to the first pa.rt of the computation, taking 2.4, 2.5, and

2.6 as successive trials for Nl/Na’ we calculate:

Oralloy Tu
Nl/N2-2.l+ Nl/N2-2.5 nl/na-a.s

311’312 1.2440, -.2798 1.2840, -.3145 | 1.2440, -.3492 .98 .62
C519%0 0 1.6958 0 1.7305 0 1.7652 0 .50
k), Ky .34155, .35585 34155,  .36790| .34155  .37987 .08869 .18863
o, ¢ | 1.2M0, 1.2617 | 1.2Wk0, 1.2763 | 1.24k0, 1.2923 .98,  .9035
c;, cg - 1.6958 - 1.7305 - 1.7652 - .50
aped | 1 853 1 -5.255 | 1 -3.902 1 .37
g o5 o 1 0 1 0 1 0 1

These calculations are followed by three one-velocity calculations

and the computation of Al and BJ.’ The results are given in the table below:
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L
N, /¥, & B, A pyros B
2.4 6.129 .6322 9.408 876 1,345
2.5 5.905 .5827 6.125 .870 1.237
2.6 5.696 .5403 4,785 .§83 1,144

Finally, testing Nl/Na by calculating D where D & left-hand side
of (25,a) minus the right-hand side, we obtain:

N, /Ny=2.k, Dm-.0518; N, /N =2.5, D=.0367; N, /N =2.6, Dm=.1122.
Hence, by interpolation N, /N =2.157, a,=6.001, B,=.6040, A +ocy =.872,
'B,=1.283, and by calculation k,(Oy)=.3627, Otg(Oy)--6.2l9, and

A;=T.091.

The average velocity v in the core is then given by:
v = 3457 & [(2'“57/"'1"1) + (l.OOOﬁ‘ava )] = 9,04 cm/shake to be
compared with the Int;gra.l Theory result of 8.98, (estimated from
the table of v vs tamper thickness given in LA-1276).
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EXAMPLE IIT

As g f£inal example let us consider the same problem as in Example
II but with a finite rather than an infinite tamper. We take the
outer radius &, equal to 2a,. The parameters are the same &s in
Example II but the Tu flux distributions will be different and the

boundary conditions more complicated. We have:

ink,
r%r) ) sinklr . °‘l N sk r2r
(28) Oy: ¢
: k/(r) sinkr
sinhklr coshklr
r”,/(1') - Bl[ T ]
coshk,.r
(29) T + of [ s—i;-hka: + B, ‘3;'2?2'
inhk coshk,.r
(o, [ " 5 |

Before writing down the boundary conditions we introduce the following
i
abbreviated notation: We denote Q(kir,ki/o-gcg) by Qig(r) ,

9%, 1 i
Ef(cg-l)s(kir) vy Sig(r)’ and similarly R(kir,ki/trgcs) by Rig(r) and

o .
E&(c;-l)'l‘(kir) vy Tig(r): The boundary conditions can then be written as:
i

-22-




3ISV3T3H O INdNd d04 d3aN0dddv

<z

Core Finite r

(=) A1"11("‘1)‘“°‘§"‘2‘321("‘J.) = qull(a'l)+°‘12.B2Q21(al)+Bl§lR11(a’1)+Q12.32§2R2l(al)

() A8y (o) )+ 7R85, (ay) = 3,8y, (8 +@5B By () 4B, B Ty, (2} @B B Ty (o)
(e) AQp(ay) = ByQy(ay )4B,BR (ay )
. (a) A8,(a)) = BSyo(a) )4B,B,T 0 (sy)
(e) Bl°1.1(‘2)*qinaqal(aa)“BlﬁlRu(aa)*“:%3252321(32) =0
L(2) B,Qp(8,)4B,5,Rpn(8,) = O

The procedure for solving the sbove system is very similar to the one outlined in Example

II. We take A, =1 and solve for &,, B,, and §2 by one-velocity methods using (c), (a), and

(£). Ve obtain A, from (26), then B; and ]-Slby solving (b) and (e) simultaneously, and finally

a check on N:I_/N2 by calculating D, where D = left-hand side of (2) minus the right-hand side.

3ASV3T1Ed O I'1dNd d04 d3N0dddv



APPROVED FOR PUBLI C RELEASE

The results of the calculations are summarized in the table below:

CASE I II 1II

Calculated

Quantities 1'1/1'2'2 A5 N, /N,=2.20 N, /N =2.25

k, &y .3%155, 32532 -34155, .33148 .34155, .33761
a8y 6.800 6.658 6.522

af, o 4 a | 5201, .06 9.247, .895 | 25.439, .887

By, §2 -.T7968, -.9990 -.7599, -.9989 -.7257, -.9987

By, §l -1.8652, -.9033 -1.7851, -.8998 -1.7117, ~-.8954
D -.0903 -.04k7 .0035

Hence, by interpolation Nl/N2n2.2h6, 8 = 6.532, or.?_+A1-.888,
B,=-.7282, 32-—.9987, B,=-1.T170, 51--.8957, and by calculation

k=.33712, &2 = 22,541, and A =-21.653. For the temper we have as in
Example II k;=.08869, k,=.18863, and X2m-i.37h.

The average velocity v in the core is given by:
v =3.246 - [(2.211-6/civ1) + (1.000/0-2v2) ] = 9.2 compared to the
Integral Theory result of 9.1k given in LA-1276. The critical radii also
agree well (8.W.: 6.53, I.T.: 6.68), the error being in the direction

apd of the magnitude one is accustomed to in one-velocity calculations.
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APPENDIX

THE SPHERICAL HARMONIC METHOD

We would like to compare the Serber-Wilson Method with another
important method, the Spherical Harmonic Method, both with regard to
the complexity of the computations involved, and with regard to the
accuracy one may expect. At present, the latter comparison cannot
be made since very few multi-velocity calculations have been carried out
vwith either method. In the ‘one-velocity case, however, it is generally

held that the Serber-Wilson Method and the P_-Approximstion (the

3
Spherical Harmonic Approximation of order three) are, as far as
accuracy is concerned, about equivalent.

For the purpose of comparing the two methods with regard to
complexity (computational as well as mathematical) the following brief
outline of the Spherical Harmonic Method will probably suffice. We
consider again the Ge-velocity isotropic theory and expand the flux

distributions %(r, ,u.) in Legendre series:

n
Am/‘-) = %%;0 (2k+1) ?g,k(r)Pk(/“)’
(31) L
Yo, k() -‘[; Jg’(r,/ﬁpk(/c)df—, g=1,2 ..., G.

vhere n denotes the degree of approximation and Pk( /L) the Legendre

-28-
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Polynomials. We substitute the sbove expansion in ( 9), mltiply by
Be(pe), £=0, 1, ..., n, on both sides and integrate over /< from
-1 to +1. Before performing these integrationms, /ka( /<) and

t
(1- /u.a)Pk( /b) are conveniently replaced by:

(1) e () = [(eslm (o) wp (a0 |
(32) |

(2%41) (1- 4%)P! (£2) = k(k41) [pk_l(,u) - B (0 ] ,

respectively. Carrying out the asbove steps we arrive at the following
system of differential equations:

(33) (1) O+ 5B Yy g+ KO- ED g L v (@) y, | -

G

g:lc'h"ghyh,o‘ k=0,

usually referred to as the P, -transform of (9). For reasons which
will not be discussed here, n is usually taken to be odd, n=1, 3, 5, ...
Equations (33) can be written in several alternate forms. For

k+1 .
instance, if we let )Vg,k - g,k/r , we obtain:

(34) 2o, 2,k+1* ¥ [rDr‘(ak'l)] LLC L AL A

G
Ste ¢ s k=0
% h gh "h,0’ ’

0; k.l, 2’ ceey n,
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and replacing r° by x, denoting the right-hand side of (34) by RES (3% ),

we have:
(35) 2(k+1)Dx ¢s,k at k[ 2xDx-(2k-l)] ¢g’k_l+(2k+l)°‘g ¢g’k = RHS (34).
To derive tle differential equation for ¢g 0 for a particular n,
s

the following formula, obtained from (35) by differentiation, is very

useful:
k+1 1. 2 k-1
(36) 20105t b o+ B KDL DL B,y gt (2k+l)o-gD§ @, 1 = FES (34)

For with the aid of (36) we can eliminate the higher order ¢g k's and
2
be left with & (n+l)-order differential equation in ¢s o alone.
2

We obtain, omitting the subscript g for the moment:

/22211):2( $, = - DE -3 (20, $,),

233103 ¢3 = 500% ¢,-(4p2-1507) (20, ¢, ),

37

.

2l @, = (02-359P )2 P+ o (5502-10507) (20, B)),
2%5:) ¢ = - (16102-3155P)02 Be 64D -T35SPoZacs ) (20, By ),

\266:1):6‘ 8, = -(250" 204 <Pp24385 oM )02 B o (2310 -11900PPu11550™ ) (20,9 ),

¢!
where 2Dx¢g,l - (éc-hc8h¢h’o)- % ¢3’0. 8ince ¢g,n+l = 0 in

Pn-appfoximatiop we have the following differential equations for

n=1, 3, and 5:

-30-
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N ]
( (3o -Da) !
2 5 0*F & 1% Pn,0
30.8 9] g h=l gh “h,
~ - 4 2 4 :
1050 -900-20 G
Py | ——E i b0 2. ZiCanPu o
(33) { 3 | & £(105 -ssn 2) & gha ° &
6 h 2 6 G
0o D -2
P_: 115 cs 157535 1'+525;§ *Pr . 0= 1 Z “h%eh ¢h,o
_ \ ' o (11550- -3_190<r21> +231)p} | 80 g hm

where it is understood that the denominator in the brackets operates on
the right-hand side and the numerator on ¢ g,0
>

Note that the operators in (38) are continued fraction approxi-
mations of z/ert z with z = iDr/cr'g. For we have:

g (39) zfart z = 1 + 22/3#&22/54-922/74-...

Denoting the (n+1)th approximstion (the first (n+l) terms) of (39) by

[z/a.rb z] » Ve have in the general case:
n

G

(40) B: [(1D/c')a-art(iD/°'g)] $g,0 a—lgz B $h,0 *

h

It can now readily be verified that the gemeral solution of (40)
is given by:

-31-
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PPE—— T3 e,

SEEET
% eee o see - e’
Lin+1)c
" / 2 1 sink,r _ cosk,r
(81) ¢g,0 »r ;kg)o =r S(r) =T ey agAi kir + Ai |ki|r ’

provided the ki's and or.;'s satisfy the following matrix equation:

c - 1 1 c c aci o
lJ- EE;EITE;7E%:7' n ]12 e & & o o e o Ji} A 1
¢ c - ki/oé c S-g&i 0
21 22 artlkiﬁzf n Y~ (¢ o‘l 2
(42) =
c c c - ki/o-G ojo;i 0
\ a1 G2 GG a.rtikikéi n \0'1 G \

which obviously approaches (11) as n approaches == . The eigenvalues

k1 come in this case from an algebraic equation in k? of degree
%‘-(n-!-l)G. We can, therefore, expect %(n-f-l)G eigenvalues in the right

half of the complex plane.

In comparing the Serber-Wilson and the Spherical Harmonic Methods
we observe that the diffiuclty of having a sufficient number of ki's
is replaced by the hardships involved in having to deal with complex
ones, and that the Spherical Harmonic Method has Z(n+l) times as many

REEY

®
000000
[ ]
900000
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k,'s as the Serber-Wilson Method, which implies (for n 2 3) more terms
118 to calculate, etc. Finally, the boundery conditions

-4
associated with the Spherical Harmonic Method are more difficult to

in (41), more &

apply, not only because there are more of them (n > 3), but also because
the remaining angulsr moments, i.e., Vg X’ k=1,2, ..., n, must be
2
computed. For the conditions usually imposed on the y 's (or ¢b_,'s)
8,k &k
are that they be continuous at each boundary.

In Pl-Approximtion we obtain from the first equation in (37):

1l 2
(43) 2, By = T D By = " 35, r Peo
and hence:
kA
1 i1
(e Z Lo [ et neo)

where Sl(x) = (8in x - x cos x)/x2 and Tl(x) = (cos x + x sin x)/xa.
In P,-Approximation we first solve for 2D, ¢81 in the third

equation of (37), then obtaining 2°2! D29 g2 o 2331 D3 ¢ 5 from the

first and second equation:

2 .. 2
[ o ip --—1- Pr35°, D2
x Pa1 * 7 0 P —T“Jéssn io? rfeo -
(45) { 2?21 024 ,motip Lp ¢ --—-Tag—-—é-'nttﬁgo,
x? g2 rrr r'ge 55Dr-105°'8
233134 _w3tip 2p Lp & .—3;./:-5-1 pb
- Cre FEEET : ..3.3... 55?1‘-;%050"8 rre0
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Solving these differential equations we have:

26 2, 2
35+9k, kA
[ > 51 [ .__/;&_ ] o, -[Sl(kir)-b i-%j— T, (k,r) ] ,

Yo = & g | 10545565 /-
J 1hk2/o- 1 - e) kK, e.e)
- s (k o (k
09\ W™ i e e |20 T 0 |
2g 6k3/o-3 ;
P s (k ) T,(k,r) ]
Rk 2‘1.05«551:?/0-é = ’ +Tk_T 3

where Sa(x) = [(3-x2)sin x - 3x cos x] /x3,

'l‘z(x) = L (3-x2)cos X + 3x sin x]/x3,

83(x) = L (15—6x2)sin x - (15-x2)x cos x | /xh, and

T3(x) = (15—6x2)cos X + (15-x2)x sin x | /xh.
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